JLCR

Short Research Article

C-14, C-13, H-2 labeling of NVP-ACQ090 – a potent and selective somastatin sst₃-receptor antagonist[†]

THOMAS MOENIUS^{1,*}, THOMAS TROXLER² and ROLF MASERO¹

¹ Novartis Pharma, DMPK(EU)-IL, Hüninger Str., CH-Basel, Switzerland

Received 29 August 2006; Revised 24 January 2007; Accepted 22 February 2007

Keywords: C-14 labeling; diastereoselective synthesis; (-)-bornane-10,2-sultam moiety

Introduction

Somastatin is a widely distributed peptide hormone originally isolated from the hypothalamus as an inhibitor of growth hormone release. To date, five somastatin receptor subtypes (sst₁ to sst₅) have been characterized. Data show that NVP-ACQ090 **2** is a highly potent and selective somastatin sst₃-receptor antagonist.

Due to structural simplicity the chiral intermediate **1** was identified as a suitable structural component for labeling in a metabolically stable position (Scheme 1).

Different approaches for the synthesis of the key intermediate 1

The research approach (Scheme 2) was not applicable, since the labeled analogues of the pyridine derivative **3** and the chiral propionate **4** were not easily accessible. Due to elevated reaction conditions (80 bar, 60°C) labeling by chiral hydrogenation was not feasible either (Scheme 3).

Therefore, a diastereoselective approach appeared to be most promising. The (-)-bornane-10,2-sultam moiety is known to be an excellent auxiliary for

Scheme 1 Synthesis of ACQ090. Reaction conditions: (1) amine derivative, K_2CO_3 , DMF, $25^{\circ}C$, 24 h, 95%; (2) fumaric acid, 2-propanol/diethyl ether.

²Novartis Pharma NIBR, Hüninger Str., CH-Basel, Switzerland

^{*}Correspondence to: Thomas Moenius, Novartis Pharma, DMPK(EU)-IL, Hüninger Str., CH-Basel, Switzerland.

E-mail: thomas.moenius@novartis.com

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

 $\textbf{Scheme 2} \quad \text{Research synthesis. } \textit{Reaction conditions} : (3) \ \text{methyl-3-bromo-2(S)-2-methyl propionate 4, ZnEt}_2, \ \text{MnBr}_2, \ \text{CuCl, DMPU/THF, Pd(dppf)Cl}_2, \ \text{CH}_2\text{Cl}_2, \ 43\%; \ (4) \ \text{LiAlH}_4, \ \text{THF, 82\%; (5) MeP(I)(OPh)}_3, \ \text{DMF, 89\%.}$

Scheme 3 Chemical development synthesis. Reaction conditions: (6) (EtO)₂HPO/NaH, HOOCCHBrCH₃, 79%; (7) LiAlH₄, THF, 89%; (8) H₂/[Rh(nbd)Cl₂], (R)-p-DMA-MeObiphep, p(H₂) = 80 bar, 60°C, 19 h, 92% ee, 97%.

Scheme 4 Synthesis of the intermediate **14**. Reaction conditions: (12) MeOH, H_2SO_4 , $65^{\circ}C$, 12 h, 58%; (13) LiAl H_4 , diethyl ether, $30^{\circ}C$, 1 h, 68%; (14) PBr_3 , CH_2Cl_2 , 61% (unstable).

this particular approach.⁴ The diastereoselective synthesis makes use of an α -alkylation of the propionyl derivative **10** with the corresponding nucleophile **14**.

Results

Labeling of NVP-ACQ090 2 (overview)

Since it readily polymerized the picolyl bromide $\mathbf{14}$ was immediately used (Schemes 4 and 5).⁵

Conclusion

The N-[14 C]propionyl bornane-10,2-sultam **10** provided an excellent auxiliary for the diastereoselective synthesis of labeled 5-((S)-3-iodo-2-methyl-propyl)-2-methoxy-pyridine **1** – a suitable key intermediate of labeled ACQ090 **2**.

REFERENCES

1. Brazeau P, Vale W, Burgus R, Butcher M, Rivier J, Guillemin R. Science 1973; **179**; 77.

Copyright © 2007 John Wiley & Sons, Ltd.

J Label Compd Radiopharm 2007; **50**: 613–615

Scheme 5 Synthesis of NVP-ACQ090 **2**. Reaction conditions: (9) THF, -78° C, 1 M NaHMDS, HMPT, **14**, N(n-Bu)₄ I, -78° C, 5 min, 62%; (10) THF, Et₂O, 1 M LiAlH₄ in Et₂O, 0°C, 3 h, 64%; (11) DMF, methyltriphenoxyphosphonium iodide, 0°C, 1 h, 30%; (1) K₂CO₃, DMF, 25°C, 24 h, 56%; (2) fumaric acid, 2-propanol/diethylether. Analytical characterization of 2A/B: (R)TLC, HPLC >98% (RS), >98%ee, MS 2.2 GBq/mmol, NMR.

- (a) Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PPA, O' Caraoll AM, Patel YC, Schonbrunn A. Trends Pharmacol Sci 1995; 16: 86; (b) Patel YC. Front Neuroendocrinol 1999; 20: 157.
- 3. Bänziger M, Cercus J, Hirt H, Laumen K, Malan C, Spindler F, Struber F, Troxler Th.
- *Tetrahedron: Asymmetry* **2003**; **14**: 3469–3477.
- 4. Voges R. Stereoselective Procedures in the Synthesis of Enantiomerically Pure Isotopically Labelled Compounds 1994. Wiley: Chicester, 1995.
- 5. Hayashi T, Iwamura H, Fujita T. *J Agric Food Chem* 1990; **38**: 1965.